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Big Picture

It is of great utility to optimize:

Observing schedules.

Overall design of the missions and 
instruments.

We need to deal with biases as part of our sensor 
web architecture.



Autonomy

To make a system autonomous we need criteria and a 
methodology to guide/provide the autonomy in real time.

For Unmanned Ariel Vehicles (UAVs) the sophistication of 
autonomy has been growing over the last twenty years. 
The methodologies used include: 

optimization
information theory
computer vision
mixed integer linear 
programming
fuzzy logic
genetic algorithms

artificial cognition
geographic information 
systems (GIS)
set partition theory
vehicle health status
threat assessments



Previous Uses of Autonomy

The existing autonomous UAVs (aircraft or helicopter) are 
advanced and complex robotics platforms used for a 
variety of tasks. For example, UAVs can be used for:

environmental monitoring 
(weather and/or pollution)
traffic monitoring
surveillance
intelligence gathering
terrain mapping
emergency services 
assistance

studying the movement of 
agricultural threat agents, 
pollen, plant pathogens, 
and other biological 
particles
crop condition
photogrammetry
surveying



A Suite of Assets

The autonomy may be for an individual asset 
acting alone or for a suite of assets working 
together.

The assets may be of different kinds, UAVs, 
Unmanned Ground Vehicles (UGVs), Underwater 
Unmanned Vehicles (UUVs), and Unattended 
Ground Sensors (UGS).

The tasks/goals may, or may not, have been 
defined a priori.



Sensor Web Autonomy

In the case of sensor webs for earth observation we also 
have a suite of assets: orbital, sub orbital (aircraft, UAVs, 
balloon sondes, long-duration balloons, UUVs), and 
ground based.

There are also a variety of measurement types and a 
variety of purposes for these measurements, not all of 
which are known a priori.

In addition, a given sensor may have a variety of modes of 
operation. 

The observations may have significant power and 
communication requirements associated with them.



Underlying Principle

The knowledge of ignorance is 
the beginning of knowledge

Ancient Greek Saying



Situational Awareness

In our project we are adding situational awareness 
via incorporation of our theoretical and observational 
understanding.

The theoretical understanding is provided by a 
deterministic model of the system being 
observed.
The observational understanding is provided by 
prior sensor web observations incorporated 
through a data assimilation system (in this case a 
full Kalman filter).

The autonomy is provided by objective 
optimization.



Target Selection

Metrics of what we do not know (state vector 
uncertainty) are used to define what we need to 
measure and the required mode, time and location 
of the observations, i.e. to define in real time the 
observing system targets.

Metrics of how important it is to know this 
information (information content) are used to 
assign a priority to each observation.
The metrics are passed in real time to the Sensor 
Web observation scheduler to implement the 
observation plan for the next observing cycle.
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Data Query

Constituent 

Observation 

Databases

NASA Aura 

MLS

NASA Aura 

TES

NASA Aura 

HIRDLS

NASA Aura 

OMI

NASA Aqua 

AIRS

SCISAT-1 

ACE

NASA ERBS 

SAGE II

SBUV2

ODIN SMR

Ozone Sondes

Water Sondes In service aircraft
NASA Aircraft 

campaigns

Directable 

Assets

Ground based 
observations

Envisat 

MIPAS

Envisat 
SCHIAMACHY

What we know from observations



Parallel Data Queries (MPI2)
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Parallel Database Cluster

Increase performance



AutoChem Plug-in
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AutoChem Component
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AutoChem Ensemble
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Like the database queries, the AutoChem system is also implemented 
in a Massively Parallel way using a master slave architecture.

Increase performance



Automatic Code Generation

Engineering Diagram for AutoChem Code Generation

The model can automatically rewrite itself!



Sensor Web Simulator

Many Assets & Many Targets



Target Assignment: 
Multiple Modes
Various modes depending on situation

During a validation period (e.g. for the new decadal 
survey missions) we may want to target regions where we 
know the state of the system with the highest precision for 
our validation. In this case we would use targets defined 
by the minima in our state vector uncertainty. 

Conversely, during routine operation we would like the 
observing system to be adaptively reducing the total 
uncertainty, so would use targets defined on the maxima 
in our state vector uncertainty.

It may be of use to have feature recognition as part of 
the targeting. For example, we may be focusing on ship 
tracks, or jet streaks in the weather systems.



Feature Recognition

Ship Tracks



Image Processing Steps



Information Content

To make best use of any observing system it is 
useful to construct a ranked list of variables/
constituents that characterizes their information 
content. This list is obviously a function of the 
question asked as well as time and location. 
One example of such an index could be based on 
answering the question, in going from time t to time 
t+Δt what are the key chemical players?
The photochemical box model M describes the 
transformation of vector x from time t to time t:+Δt.

€ 

x(t+Δt ) = M (t, xt )



Information Content

Figure (a) shows the linearized model matrix for a local solar time 12:15 at a potential temperature 
of 426 K (≃18 km) on 30 March 1992 at 38°S. (b) shows the chemical information content index, Ic.

€ 

x(t+Δt ) = M (t, xt )



Hybrid Mode

Imagine a hybrid 
mode where we use: 

feature recognition
information contentThe chemical information content changes with time and location. The panels show some 

examples of how the information index changes with time (at 15 minute intervals) and 
location in a vertical profile at 38°S.



Scheduling Autonomy

So our autonomy has reduced to objectively 
choosing our targets and for each target 
objectively choosing a priority.
All that remains is to see if our observing sensor 
web is capable of observing these targets. For 
this we use STK and Scheduler

Many Assets & Many Targets



Scheduler Results

Power

Communication

Bandwidth

Memory



Genetic Algorithms
A genetic algorithm is a search technique used in computing to find true or 
approximate solutions to optimization and search problems. 

Genetic algorithms are a particular class of evolutionary algorithms that 
use techniques inspired by biological inheritance, mutation, selection, and 
crossover (also called recombination). 

The evolution usually starts from a population of randomly generated 
individuals and happens in generations. In each generation, the fitness of 
every individual in the population is evaluated, multiple individuals are 
stochastically selected from the current population (based on their fitness), 
and modified (recombined and possibly randomly mutated) to form a new 
population. 

The new population is then used in the next iteration of the algorithm. 
Commonly, the algorithm terminates when either a maximum number of 
generations has been produced, or a satisfactory fitness level has been 
reached for the population.



Dealing With Biases

Almost by definition data biases are going to be 
an issue with sensor webs as we are fusing data 
from so many sources.
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Biases are ubiquitous. When combining 
observations from many sensors over a long 
time period biases will always be an issue.

If they are not dealt with they hinder us 
addressing the scientific issues the 

measurements were taken to address (as the 
next set of slides illustrate).



Variations in Stratospheric Cly 
Between 1991 and the present

• Data can be biased, maybe as a 
function of many parameters.

• May be observing a proxy for 
what we really want to know.



ozone reductions there (SOCOLand E39C), and the model
with the largest cold bias in the Antarctic lower strato-
sphere in spring (LMDZrepro) simulates very low ozone.

CCMs show a large range of ozone trends over the
past 25 years (see left panels in Figure 3-26 of Chapter 3)
and large differences from observations.  Some of these
differences may in part be related to differences in the sim-
ulated Cly, e.g., E39C and SOCOL show a trend smaller
than observed, whereas AMTRAC and UMETRAC show
a trend larger than observed in extrapolar area weighted
mean column ozone.  However, other factors also con-
tribute, e.g., biases in tropospheric ozone (Austin and
Wilson, 2006).

The CCM evaluation discussed above and in Eyring
et al. (2006) has guided the level of confidence we place
on each model simulation.  The CCMs vary in their skill
in representing different processes and characteristics of
the atmosphere.  Because the focus here is on ozone

recovery due to declining ODSs, we place importance on
the models’ ability to correctly simulate stratospheric Cly
as well as the representation of transport characteristics
and polar temperatures.  Therefore, more credence is given
to those models that realistically simulate these processes.
Figure 6-7 shows a subset of the diagnostics used to eval-
uate these processes and CCMs shown with solid curves
in Figures 6-7, 6-8, 6-10 and 6-12 to 6-14 are those that
are in good agreement with the observations in Figure
6-7.  However, these line styles should not be over-
interpreted as both the ability of the CCMs to represent
these processes as well as the relative importance of Cly,
temperature, and transport vary between different regions
and altitudes.  Also, analyses of model dynamics in the
Arctic, and differences in the chlorine budget/partitioning
in these models, when available, might change this evalu-
ation for some regions and altitudes.

21st CENTURY OZONE LAYER

6.26

Figure 6-8. October zonal mean values of total inorganic chlorine (Cly in ppb) at 50 hPa and 80°S from CCMs.
Panel (a) shows Cly and panel (b) difference in Cly from that in 1980.  The symbols in (a) show estimates of Cly
in the Antarctic lower stratosphere in spring from measurements from the UARS satellite in 1992 and the Aura
satellite in 2005, yielding values around 3 ppb (Douglass et al., 1995; Santee et al., 1996) and around 3.3 ppb
(see Figure 4-8), respectively.
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Why we need the data

We need to know the distribution of inorganic 
chlorine (Cly) in the stratosphere to:

Attribute changes in stratospheric ozone to 
changes in halogens.

Assess the realism of chemistry-climate models.



Cly=HCl+ClONO2+ClO+HOCl
+2Cl2O2+2Cl2

Long time-series

Sporadic
Long time-series

Since 2004

Estimating Cly is hampered by lack of observations

Estimating Cly is hampered by inter-instrument biases



HCl Inter-comparisons

0 1 2 30

1

2

3

HALOE HCl (ppbv)

M
LS

 H
Cl

 (p
pb

v)

Slope = 1.09
Intercept = 0.070 ppbv

 

 

Data
1:1
Weighted Fit
Fit

0 1 2 3
0

1

2

3

HALOE HCl (ppbv) NN adjusted

M
LS

 H
Cl

 (p
pb

v)

Slope = 0.995
Iintercept = 0.0093 ppbv

 

 

Data
1:1
Weighted Fit

Global Scatter Diagram



Re-calibration 
using a Neural Network
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Long-term continuity

Applied Neural Network
Re-calibration to HALOE



Simulation courtesy of Jay Boris NRL

Future Possibilities



Looking Ahead



Educational Aspects

Two graduate students:

Oleg Aulov (PhD), registered at the 
University of Maryland Baltimore County for 
a PhD in Computer Science and funded 
from this proposal. Oleg has been been 
working on the STK aspects of this project. 

Andrew Rickert (MSc), registered at the 
University of Maryland Baltimore County for 
a MSc in Physics. Andy has been been 
working on some of the neural network 
aspects of this project. 



Summary
Autonomous target selection based on:

Objective measures, such as state vector uncertainty 
(what do we need to know?)
Image processing, feature recognition

Autonomous target priority based on:
Information content (how useful is the observation?)

Hybrid Modes
Smart scheduler aware of sensor web’s capabilities

Biases are always going to be an issue, let us deal with 
them.

Objectively optimized design using genetic algorithms.


